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Abstract
The total variability factor space in speaker verification sys-

tem architecture based on Factor Analysis (FA) has greatly im-
proved speaker recognition performances. Carrying out chan-
nel compensation in a low dimensional total factor space, rather
than in the GMM supervector space, allows for the application
of new techniques. We propose here new intersession compen-
sation and scoring methods. Furthermore, this new approach
contributes to a better understanding of the session variability
characteristics in the total factor space.
Index Terms: Joint Factor Analysis, i-vectors, Total variability
space, speaker recognition.

1. Introduction
The use of Gaussian Mixture Models (GMM) in a GMM-
UBM framework has been a standard in speaker verification [1].
This generative model has been extended to model jointly the
speaker component and the session (or channel) component.
This extension is named Joint Factor Analysis (JFA) [2].

Inspired by the JFA approach, N. Dehak [6] proposed to
extract from the GMM super-vector a compact version, named
i-vector, containing both the speaker and the session informa-
tion. In this case, the session variability is taken into account
during the scoring process, unlike JFA which takes it into ac-
count during the speaker modelling given an utterance. In
the i-vector space, the session variability is modeled by using
a global covariance matrix modeling the correlation between
components in vectors containing only the session information.
These session-only-dependent vectors are obtained by subtract-
ing, from a given i-vector, the mean of all sessions belonging to
the speaker corresponding to that i-vector.

This idea is very promising as it opens a wide panel of
perspectives in connection with the data analysis domain. N.
Dehak has proposed to use LDA and WCCN to process the i-
vectors [5]. In this paper we propose a new i-vector treatment
method, adapted to the spatial distribution of these vectors in the
total factor space. We will validate this new method on NIST
Speaker Recognition Evaluation 2006 and 2008.

2. I-vector extraction
As proposed by P. Kenny [3], the Joint Factor Analysis model
for session h belonging to speaker s can be written as:

m(s,h) = m+Dys + V zs + Uxh (1)

where m is the speaker- and channel-independent supervector,
which can be taken to be the UBM supervector, m(s,h) is the
session-speaker dependent mean super-vector. U is the session
variability matrix of low rank R (a MD × R matrix where M

is the features dimension and G is the number of gaussians in
the UBM) and xh are the channel factors (an R vector). V
is the speaker variability matrix of low rank S (a MD × S
matrix) and zs are the speaker factors (an S vector). D is a
(MD×MD) diagonal matrix and ys the residual speaker vec-
tor (a MD vector). Both, ys, zs and xh are assumed to be nor-
mally distributed among N (0, I). DDt + V V t represents the
variability of the speaker mean super-vectors. UU t represents
the session variability. Hence, as we assume that the speaker
and session variabilities are independent, the total variability is:
DDt + V V t + UU t.

By merging the information belonging to the subspaces
generated by V and U and by ignoring the residual speaker
component, we obtain:

m(s,h) = m+ Tw(s,h) (2)

where T is the low rank variability matrix of speaker and ses-
sion and w(s,h) are the total variability factors. w(s,h) is as-
sumed to be normally distributed among N (0, I). The T ma-
trix is estimated iteratively using the algorithm detailed in [4]
(in which the term Dys is ignored). We define w(s,h) obtained
using the data frames of session h of the speaker s as i-vector.

3. Intersession compensation
We first present in paragraph 3.1 the i-vectors method proposed
by N. Dehak [5][6]. Then we propose in paragraph 3.2 a new
set of methods able to carry out channel compensation. These
methods, based on new linear and non-linear transformations,
prepare the data for new scoring method described in paragraph
4. To simplify notations, we will ignore subscripts h and s in
this description. The following acronyms will be used: LDA
for Linear Discriminant Analysis, NAP [7] for Nuisance At-
tribute Projection and WCCN [8] for Within-Class Covariance
Normalization.

3.1. LDA+WCCN and cosine-fast scoring

N. Dehak proposed [5][6] to carry out channel compensation in
the total factor space using several channel compensation tech-
niques working in this space. The best performances were ob-
tained by the process LDA+WCCN+Fast scoring. The Linear
Discriminant Analysis (LDA) is a supervised method of dimen-
sionality reduction. It defines new spatial axes that minimize the
intra-class variance caused by channel effects and maximize the
variance between speakers. So, i-vectors are subjected to the
projection matrix obtained by LDA. The WCCN and cosine-
fast scoring approach computes a cosine score, according to the
metric of a within-class covariance matrix using a set of back-
ground impostors having several sessions each. This within
class covariance matrix, introduced by Andrew Hatch [8] in the



context of SVM classifiers, is calculated in a similar manner to
the LDA within class covariance. For i-vectors, the calculation
is done in the projected space of the LDA. Finally, a fast scoring
calculates a cosine score between two test vectors according to
the WCCN matrix. This i-vectors treatment method nowadays
yields the best results in the most common speaker recognition
evaluations.

3.2. Proposed method

The proposal approach aims to solve the three following points:
(i) The i-vectors w of eq.2 have to be theoretically nor-

mally distributed among N (0, I). This constraint produces i-
vectors with independant dimensions and identical standard de-
viations, which is important for matricial-products-based scor-
ing. It seems important for us to guarantee that this constraint
is verified.

(ii) In [5] §3.2. and in [6] it is clearly shown that the channel
effects carry out not only a linear deviation but also a non-linear
dilatation of a given speaker vector (”radial” effect). In these
works, the linear effect is removed thanks to the LDA (but si-
multaneously with a dimension reduction) before to cancel the
dilatation effect using cosine-scoring. We consider that the ra-
dial effect should be first cancelled, independently of dimension
reduction.

(iii) In [5] [6] the i-vectors issued from the FA dimensional-
ity reduction technique are immediately projected by the LDA
onto a low rank subspace (from 400 dimensions for total factor
space to 200 for LDA). We consider that discriminant trans-
formations could take advantage of the full rank total factor
space compared to similar transformations in the LDA lower
rank space.

3.2.1. I-vectors transformations

To deal with (i), we consider the difference between i-vectors
(mean, covariance) and (0, I) as a residue, which can be use-
fully removed, therefore that the i-vectors have to be standard-
ized. To deal with (ii), i-vectors can be length-normalized. We
chose to divide them by their norm but according to the accu-
racy matrix metric (inverse of covariance matrix). As desired in
(iii), these two transformations do not involve a dimensionality
loss. But when applying length-normalization on standardized
data, the resulting i-vectors are no longer standardized, and re-
ciprocally. We will see later in this paragraph how to reconcile
the goals i) and ii).

Let w and V denote the empirical mean and covariance ma-
trix of a broad set of training i-vectors. To apply standardization
and length-normalization, the covariance matrix V is decom-
posed by diagonalization into PDP t where P is the eigenvec-
tors matrix of V -in columns- and D is the diagonal version of
V . A train i-vector w is transformed to w

′
such that:

w
′
=

D−
1
2P t (w − w)√

(w − w)t V −1 (w − w)
(3)

Note that the numerator is equivalent by rotation to
V −

1
2 (w − w). The euclidean norm of w

′
is equal to 1. The

same transformation is applied to the test i-vectors, using the
training set parameters w and V as estimations of test set pa-
rameters.

As shown in Figure 1, from an initial training set (Fig.1
a.) previously centered, a rotation is applied (Fig.1 b.) around
principal axes of total variability by application of P t. Then,
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a. Initial
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b. Rotation
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c. Standardization
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d. Length normalization

Figure 1: Effect of the operations of standardization and length-
normalization

applying D−
1
2 achieves a standardization of vectors (Fig.1, c.).

After length-normalization (Fig.1, d.) the i-vectors w
′

lie on the
surface area of the unit hypersphere.

As noted before, transformed i-vectors are no longer stan-
dardized. But the previous process (compute w and V then ap-
ply eq.3) is iterated: thenw tends to 0 and the V matrix tends
to a diagonal matrix with identical diagonal values. To evaluate
the convergence of V we measure the distance between the cur-
rent occurence of V and the closest diagonal matrix with identi-
cal diagonal values. We use Frobenius matrix norm of the trace
A 7→ ‖A‖F =

√
tr(AtA) and compute the Least-squares er-

ror LSE between V and its projection onto vect {I}1 :

LSE =

∥∥∥∥V − tr (V )

tr (I)
I

∥∥∥∥
F

(4)

Table 1: Distance (Least Square Error LSE) between covari-
ance matrix V and family vect {I} of diagonal matrices with
identical diagonal-values, for 6 iterations of the transformation.

iter. 0 (LSE before iterations): 1× 10−2

iter. LSE iter. LSE iter. LSE
1 4× 10−3 3 1× 10−4 5 6× 10−6

2 6× 10−4 4 2× 10−5 6 1× 10−6

The LSE for the six first iterations are reported in Ta-
ble 1. The distance between V and vect {I} quickly con-
verges to 0, hence the covariance matrix of i-vectors (which
are length-normalized) becomes approximately diagonal with
identical diagonal-values.

The transformations described above take into account the
three initial goals i), ii) and iii). The resulting i-vectors are now
well conditionned in order to apply a simple scoring method.

1vect {I} = {λI, λ real}
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Figure 2: Effect of radial-NAP technique

Additional dimensionality reduction techniques can also be ap-
plied on these vectors.

3.2.2. Additional radial-NAP technique

The intersession compensation in the i-vectors space can still
be improved using an additional dimensionality reduction tech-
nique. We present here a NAP technique adapted to our i-
vectors lying on the surface area of an hypersphere, that we call
radial-NAP.

Presented in [7], the usual NAP technique estimates session
variability as a subspace of intermediate rank obtained using
principal axes (eigenvectors having the largest eigenvalues) of
the within-class covariance matrix, and projects the i-vectors
into the orthogonal complementary subspace, assumed to be the
speaker space. The within class covariance matrix W of the
training set is calculated as follows:

W =

S∑
s=1

ns

n
Ws =

1

n

S∑
s=1

ns∑
i=1

(ws
i − ws) (w

s
i − ws)

t (5)

where Ws is the covariance matrix of speaker s, ns is the
number of utterances for speaker s, n is the total number of
utterances, ws

i are the train i-vectors of sessions of speaker s
and ws their mean2 .

In order to adapt NAP to our i-vectors conditioned to lie
on an hypersphere surface area, we assume a radial distribution
of a given speaker i-vectors. Radial-NAP follows this idea by
first suppressing the nuisance dimensions and then normalizing
the vector norm in order to stay on the hypersphere. Geometri-
cally speaking, using radial-NAP, each i-vector is rotated to get
orthogonal to the first r principal axes of the session-subspace.
Figure 2 presents, in three dimensions, the geometrical result of
this compensation technique.

Let pWr (w
′) denote the projection of an i-vector w

′
onto

the range of rank r of the matrix W . A train or test i-vector w′

is transformed to w
′′

such that:

w
′′
=

w′ − pWr (w
′)

‖w′ − pWr (w
′)‖ (6)

4. Mahalanobis metric scoring
The training set of i-vectors can be classified according to the
known class of the speaker. Given a new observation w, the goal

2WCCN matrix used by N. Dehak [6] does not use ns
n

in eq.5, con-
sidering that all the speakers contributions are equivalent.

of a statistical classifier is to identify to which class it belongs.
If we assume homoscedasticity (equality of class covariances)
and Gaussian conditional density models, the most likely class
can be obtained by the Bayes optimal solution. An i-vector w
is assigned to the speaker s that minimizes:

(w − ws)
t W−1 (w − ws) = ‖w − ws‖2W−1 (7)

where ws is the centroid (mean) of class s and W is the
within class covariance matrix of eq.5. It is worth noting that,
with these assumptions, the Bayesian approach is similar to the
Fisher’s geometric approach: w is assigned to the nearest cen-
troid’s class, according to the Mahalanobis metric of W−1. To
assess the suitability of this method on i-vectors we test it on our
training set, described in section 5. The transformation process
described in 3.2.1. is applied to the 12399 initial i-vectors from
890 speakers. Each transformed i-vector is then assigned to the
nearest centroid’s class, according to the W−1 metric. 12221
of the 12399 i-vectors (98.56 %) are properly classified.

Motivated by this result, we propose to use a Mahalanobis
metric for the speaker detection scoring. The score between two
i-vectors w1 and w2 is proportional to the log-probability that
w1 and w2 belong to an unique class following the covariance
matrix W . The centroid of this hypothetical class could be w1

or w2 or their mean, knowing that each proposition gives equiv-
alent result. The final Mahalanobis-based scoring function is:

score (w1, w2) = −‖w1 − w2‖2W−1 (8)

5. Experiments and results
5.1. Experimental setup

The background model in the experiments is the same as the
background model in the LIA submission in the NIST-SRE-
2006 campaign (male set only). Training is performed based
upon Fisher database and consists of about 10 million of speech
frames. Frames are composed of 19 LFCC parameters, its
derivatives, and 11 second order derivatives (the frequency win-
dow is restricted to 300-3400 Hz). A normalization process
is applied, so that the distribution of each cepstral coefficient
is 0-mean and 1-variance for a given utterance. The back-
ground model has 512 components whose variance parameters
are floored to 50% of the global variance (0.5).

Speaker verification experiments are performed based upon
the NIST SRE 2006 and 2008 databases, male speakers only
(referred to as 2006 and 2008 protocol). The 2006 protocol
consists of 354 speakers, 9720 tests (741 target tests, the rest are
impostor trials). The 2008 protocol consists of 3798 speakers,
39433 tests (8290 target tests, the rest are impostor trials). Re-
sults are given in terms of equal-error-rate (EER) and the min-
imum DCF (an a posteriori decision). Train and test utterances
contain 2.5 minutes of speech in average (around 30% of speech
frames per session have been retained).

For the SVM system, the intersession variability matrix is
enrolled on the NIST-SRE-2004 database with 2938 examples
with 124 speakers (around 20 iterations to converge). From the
same database, 200 impostor speakers are used for score nor-
malization and as negative examples for the SVM classifier.

In the i-vector model, the total variability matrix T is
trained using 12933 sessions from 890 speakers (NIST 2004,
2005 and Switchboard, about 15 sessions per speaker). Speaker
models are derived by Bayesian adaptation of the Gaussian
component means, with a relevance factor of 14. The same



database is used to estimate the inter-session matrix W in the
i-vector space. The dimension of the i-vectors in the total factor
space is 400.

5.2. Results

Our experiments were carried out on the telephone only data
(det 3) for the core condition of the NIST 2006 SRE dataset,
and on the telephone/non telephone data (det 4,5) and telephone
only data (det 6,7,8) for the core condition of the NIST 2008
SRE dataset (only male part is used).

Tables 2 and 3 give comparison results for male gender be-
tween our baseline SVM-FA-ztnorm and three methods using
i-vectors: LDA+WCCN with fast scoring using cosine kernel
(best LDA dimensionality reduction is obtained with r = 200),
three iterations of standardization + length-normalization, fol-
lowed by Mahalanobis metric scoring, and three iterations then
additional radial-NAP (best corank r is 50 for 2006 and 100 for
2008) always concluded by Mahalanobis metric scoring. Note
that three iterations have been sufficient to obtain best perfor-
mances. The LDA+WCCN+Fast scoring technique decreases
performance of our baseline, which is in contradiction with [5].
The methods we propose in this paper give significant gains in
all experimental conditions, in terms of EER and DCF. Radial-
NAP yields the best EER performance for 2006 telephone data
(Table 2) and for telephone/non telephone and ”all” telephone
data 2008 (Table 3, det 5-6). The use of three iteration with-
out radial-NAP yields the best performance for telephone only
data 2008 (det 7-8) but only in terms of EER, the radial-NAP
remaining the best in terms of DCF. We have also applied zt-
normalization (the results are not presented). Score normaliza-
tion does not bring additional gain, which shows the quality of
scores produced by the proposed i-vectors transformations fol-
lowed by Mahalanobis scoring.

Table 2: Comparison of results from SVM-FA-ztnorm method
and methods using i-vectors: LDA + WCCN (rank 200)
with fast scoring, three iterations of standardization + length-
normalization, and three iterations followed by radial-NAP
(corank r = 50). The results are given as EER and min.DCF ×
100 on the male part of the core condition det 3 (telephone) of
the NIST 2006 SRE.

NIST SRE 2006 det 3
EER DCF

×100
baseline (SVM-FA-ztnorm) 2.16 % 1.06
LDA+WCCN+Fast scoring 2.93 % 1.24
stand.+length norm (3 iter.) 1.98 % 1.00

stand.+length norm (3 iter.)+radial-NAP 1.69 % 1.01

6. Conclusion
The total factor space contains both the speaker and the ses-
sion information. We presented in this paper a set of simple
linear and non-linear transformations to remove the session ef-
fects and a simple scoring technique based on a statistical clas-
sifier. Compared to our baseline and to LDA+WCCN+cosine
scoring, the proposed method gives the best performances. All
techniques of intersession compensation and scoring in the i-
vectors space show both linear and non-linear natures of this
variability, and the necessity of treating completely these two
parts to achieve satisfying performances.

Table 3: Comparison of results from SVM-FA-ztnorm method
and methods using i-vectors: LDA + WCCN (rank 200)
with fast scoring, three iterations of standardization + length-
normalization, and three iterations followed by radial-NAP
(corank r = 100). The results are given as EER and min.DCF
× 100 on the male part of the core condition (telephone/non
telephone det 4,5 and telephone only det 6,7,8) of the NIST
2008 SRE.

NIST SRE 2008 - EER (%)
det4 det5 det6 det7 det8

baseline
(SVM-FA-ztnorm) 10.44 6.40 6.29 2.72 1.31

LDA+WCCN+
Fast scoring 7.74 6.56 6.63 3.64 2.63

stand.+length norm
(3 iterations) 5.24 5.61 5.72 2.03 0.95

stand.+length norm
(3 iter.)+radial-NAP 5.68 4.05 5.51 2.50 1.21

NIST SRE 2008 - DCF ×100
det4 det5 det6 det7 det8

baseline
(SVM-FA-ztnorm) 3.65 2.41 3.57 1.54 1.01

LDA+WCCN+
Fast scoring 3.57 2.66 3.34 1.83 1.37

stand.+length norm
(3 iterations.) 2.78 2.76 3.37 1.63 1.09

stand.+length norm
(3 iter.)+radial-NAP 2.82 2.26 3.42 1.50 0.85
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